The Internet Protocol IP

The Internet Protocol IP

- The Internet Protocol Version 4 (IPv4) is the delivery mechanism used by the TCP/IP protocols.
- IPv4 is an unreliable and connectionless datagram protocol.
- The following figure shows the position of IPv4 in the suite

Datagram

 A datagram is a variable-length packet consisting of two parts:
 Header
 Data

The header is 20 to 60 byte in length and contains information essential to routing and delivery.

Version: (VER)

- this 4-bit field defines the version of the IP protocol.
- This field tells the IPv4 software running in the processing machine that datagram has the format of version 4.

	20-65,536 bytes					
	- 2	0-60 bytes				
	←	Header		Data		
VER 4 bits	HLEN 4 bits	Servio 8 bit	:e s		To	otal length 16 bits
	ldentif 16	ication bits		Flags 3 bits		Fragmentation offset 13 bits
Time 8 I	to live oits	Protoc 8 bit:	ol s		Head	der checksum 16 bits
	Source IP address					
Destination IP address						
Option						
32 bits						

Header Length (HLEN)

- this 4-bit field defines the total length f the datagram header in 4-byte words.
- This field is needed because the length of the header is variable (between 20 to 60 bytes).
- When there are no options, the header length is 20 bytes, and the value of this field is 5: (5 x 4 = 20).
- When the option is at maximum size, the value of this field is 15
 (15 x 4 = 60)

Services.

The first 3 bits are called precedence bits. The next 4 bits are called Type of service (TOS) bits. And the last bit is not used.

Precedence

- is 3 bits subfield: from 000 to 111 (0 to 7). These bits defines the priority of the datagram in issues such as congestion.
- For example: if a router is congested and needs to discard some datagram, those of lowest precedence are discarded first.
 Network management has upper precedence.

TOS bits (type of service)

TOS is a 4 bits subfield

TOS Bits	Description
0000	Normal (default)
0001	Minimize cost
0010	Maximize reliability
0100	Maximize throughput
1000	Minimize delay

Protocol	TOS Bits	Description	
ICMP	0000	Normal	
BOOTP	0000	Normal	
NNTP	0001	Minimize cost	
IGP	0010	Maximize reliability	
SNMP	0010	Maximize reliability	
TELNET	1000	Minimize delay	
FTP (data)	0100	Maximize throughput	
FTP (control)	1000	Minimize delay	
TFTP	1000	Minimize delay	
SMTP (command)	1000	Minimize delay	
SMTP (data)	0100	Maximize throughput	
DNS (UDP query)	1000	Minimize delay	
DNS (TCP query)	0000	Normal	
DNS (zone)	0100	Maximize throughput	

Total length

- this is a 16-bit field that defines the total length (header + data) if the IPv4 datagram in byte.
- Since the field length is 16 bits, the total length of the IPv4 datagram is limited to 2¹⁶ -1 = 65535 bytes, of which (20 to 60) bytes are the header and the rest is data from the upper layer.
- But, some physical networks are not able to encapsulate a datagram of 65535 bytes in their frames. So, the datagram must be fragmented to be able to pass through those network.

Protocol	MTU
Hyperchannel	65,535
Token Ring (16 Mbps)	17,914
Token Ring (4 Mbps)	4,464
FDDI	4,352
Ethernet	1,500
X.25	576
PPP	296

Identification

this field is used in fragmentation

• this field is used in fragmentation

Time to live:

Protocol

- this 8-bit field defines the higher level protocol that uses the services of IPv4 layer.
- An IPv4 datagram can encapsulate data from several higher level protocols such as TCP, UDP, ICMP.
- This field defines the final destination protocol to which the IPv4 datagram is delivered.
- (i.e. the value of this field helps the receiving network layer know to which protocol the data belong.

Value	Protocol
1	ICMP
2	IGMP
6	ТСР
17	UDP
89	OSPF

Checksum

4	5	0		28				
	1			0		0		
4		17				0		4
		1(0.12.	14.5				
			12.6	.7.9				
4, 5	, and 0	\rightarrow	4	5	0	0		
	28	\rightarrow	0	0	1	C		
1		\rightarrow	0	0	0	1		
0 and 0		\rightarrow	0	0	0	0		
4	and 17	\rightarrow	0	4	1	1		
0		\rightarrow	0	0	0	0		
	10.12		0	Α	0	С		
	14.5	\rightarrow	0	Е	0	5		
12.6		0	С	0	6			
	7.9	\rightarrow	0	7	0	9		
	Sum	\rightarrow	7	4	4	E		
Che	cksum	\rightarrow	8	В	В	1 -		

Destination address

• An IPv4 packet has arrived with the first 8 bits as shown:

01000010

• The receiver discards the packet. Why?

Solution

- There is an error in this packet.
- The 4 leftmost bits (0100)show the version, which is correct.
- The next 4 bits (0010)show an invalid header length (2 × 4 = 8).
- The minimum number of bytes in the header must be 20.
- The packet has been corrupted in transmission.

- In an IPv4 packet, the value of HLEN is 1000 in binary.
- How many bytes of options are being carried by this packet?

Solution

- The HLEN value is 8, which means the total number of bytes in the header is 8 × 4, or 32 bytes.
- The first 20 bytes are the base header, the next 12 bytes are the options.

- In an IPv4 packet, the value of HLEN is 5, and the value of the total length field is 0x0028.
- How many bytes of data are being carried by this packet?

Solution

- The HLEN value is 5, which means the total number of bytes in the header is 5 × 4, or 20 bytes (no options).
- The total length is 40 bytes, which means the packet is carrying 20 bytes of data (40 – 20).

- An IPv4 packet has arrived with the first few hexadecimal digits as shown.
 - 0x45000028000100000106 . . .
- How many hops can this packet travel before being dropped? The data belong to what upper-layer protocol?

0x45000028000100000106...

		Header			- 1	
VER 4	HLEN 5	Service 00		0028	Total length	
0001 Identification				Flags Fragmentation offset		
Time 1 01	to live	Protocol Header checksum 06			Header checksum	
	Source IP address					
Destination IP address						
Option						

Solution

- To find the time-to-live field, we skip 8 bytes.
- The time-to-live field is the ninth byte, which is 01.
- This means the packet can travel only one hop.
- The protocol field is the next byte (06), which means that the upper-layer protocol TCP

Example of checksum calculation in IPv4

4	5	0		28				
	1			0		0		
4		17				0		▲
		10	0.12.	14.5				
			12.6	.7.9				
4, 5	, and 0	\rightarrow	4	5	0	0		
	28	\rightarrow	0	0	1	C		L
	1	\rightarrow	0	0	0	1		L
0 and 0		\rightarrow	0	0	0	0		L
4 and 17		\rightarrow	0	4	1	1		L
0		\rightarrow	0	0	0	0		L
	10.12	\rightarrow	0	Α	0	С		L
	14.5	\rightarrow	0	Е	0	5		L
12.6 —		\rightarrow	0	С	0	6		L
7.9		\rightarrow	0	7	0	9		
Sum —		\rightarrow	7	4	4	E		
Che	cksum	\rightarrow	8	В	В	1 -		1

FRAGMENTATION

 A datagram can travel through different networks. Each router decapsulates the IPv4 datagram from the frame it receives, processes it, and then encapsulates in another frame. For example, if a router connects a LAN to a WAN, it receives a frame in the LAN format and sends a frame in the WAN format.

Maximum Transfer Unit: MTU

- To make the IPv4 protocol independent of the physical network, the designers decides to make the maximum length of the IPv4 datagram equal to 65535 bytes.
- This makes transmission more efficient if we use a protocol with an MTU of this size.
- However, for other physical networks, we must divide the datagram to make it possible to pass through these networks.
- This called fragmentation

- The value of the MTU depends on the physical network protocol.
- The table shows the values for some protocols:

Protocol	MTU
Hyperchannel	65,535
Token Ring (16 Mbps)	17,914
Token Ring (4 Mbps)	4,464
FDDI	4,352
Ethernet	1,500
X.25	576
PPP	296

- When a datagram is fragmented, each fragment has its own header with most of the fields repeated, but with some changed.
- A fragmented datagram may itself be fragmented if it encounters a network with an even smaller MTU.
- In other words, a datagram can be fragmented several times before it reaches the final destination.

- In IPv4, a datagram can be fragmented by the source host or any router in the path.
- The reassembly of the datagram is done only by the destination host.
- Whereas the fragmented datagram can travel through different routers.
- When a datagram is fragmented, required parts of the header must be copied by all fragments.

- The host or router that fragments a datagram must change the value of three fields:
- Flags
- Fragmentation offset
- Total length
- The rest of the fields must be copied.
- The values of checksum must be recalculated.

Fields Related to Fragmentation

- Identification
- Flags
- Fragmentation offset

Flags used in fragmentation

VER 4 bits	HLEN 4 bits	Service 8 bits	Total length 16 bits			
Identification 16 bits			Flags 3 bits	Fragmentation offset 13 bits		
Time 1 8 b	to live bits	Protocol 8 bits	Header checksum 16 bits			
	Source IP address					
	Destination IP address					
Option						
32 bits						

- Flags: this is a 3-bit field:
- The first bit is reserved
- The second bit is called the "" do not fragment"" bit " D":
 - If "D=1", the machine must not fragment the datagram.
 - If "D=0" the datagram can be fragmented.
- The third bit is called the ""more fragment "" bit :"M"
 - If " M=1" it means the datagram is not the last fragment; there are more.
 - If " M=0" it means this the last or only fragment

Fragmentation offset

• this 13-bit field shows the relative position of this fragment with respect to the whole datagram.

- A packet has arrived with an M bit value of 0.
- Is this the first fragment, the last fragment, or a middle fragment?
- Do we know if the packet was fragmented?

Solution:

while the M bit is 0, it means that there are no more fragments; the fragment is the last one.

However, we cannot say if the original packet was fragmented or not.

A non-fragmented packet is considered the last fragment.

- A packet has arrived with an M bit value of 1.
- Is this the first fragment, the last fragment, or a middle fragment?
- Do we know if the packet was fragmented?

Solution While the M bit is 1, it means that there is at least one more fragment. This fragment can be the first one or a middle one, but not the last one. We don't know if it is the first one or a middle one; we need more information (the value of the fragmentation offset)

- A packet has arrived with an M bit value of 1 and a fragmentation offset value of 0.
- Is this the first fragment, the last fragment, or a middle fragment?

Solution Because the M bit is 1, it is either the first fragment or a middle one. Because the offset value is 0, it is the first fragment

Fragmentation example

Priority

- If one of two consecutive datagram must be discarded due to the congestion, the datagram with lower packet priority will be discarded.
- IPv6 divides traffic into two categories :
- 1- congestion controlled traffic
- 2- non-congestion controlled traffic

1- congestion controlled traffic

Priority	Meaning
0	No specific traffic
1	Background data
2	Unattended data traffic
3	Reserved
4	Attended bulk data traffic
5	Reserved
6	Interactive traffic
7	Control traffic

1-No specific traffic

• A priority of 0 is assigned to packet when the process does not define a priority

2- Background data

• Delivery of the news is a good example

3- reserved

4-Unattended data traffic

• E- mail belongs to this group

5- Attended bulk data traffic

 A protocol that transfers data while the user is waiting to receive the data (delay) is given priority 4. TFTP and HTTP belongs to this group

6- Interactive traffic

 Protocol such as TELNET that need user interaction are assigned to the second highest priority 6 in this group

7- Control traffic

 Routing protocol such as OSPF and RIP and SNMP protocols have this priority

2- non- congestion controlled traffic

Priority	Meaning
8	Data with greatest redundancy
15	Data with least redundancy